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Abstract

This study explores the impact of the structural error of biosphere models when assim-
ilating net ecosystem exchange (NEE) measurements or CO2 concentration measure-
ments to optimize uncertain model parameters within carbon cycle data assimilation
systems (CCDASs). This error has been proven difficult to identify and is often ne-5

glected in the total uncertainty budget. We propose a simple method which derives
it from the model-minus-observation mismatch statistics. This diagnosis is applied to
a state-of-the-art biogeochemical model using measurements of the net surface CO2
flux at twelve sites located in temperate deciduous broadleaf forests. We find that the
structural model error in the NEE space has a standard deviation of 1.7 g C m−2 d−1,10

without a significant correlation structure beyond lags of a few days, and a large spa-
tial structure that can be approximated with an exponential decay of e-folding length
500 km. In the space of concentrations, its characteristics are commensurate with the
transport errors, both for surface air sample measurements and total column measure-
ments. The inferred characteristics are confirmed by complementary optimality diag-15

nostics performed after site-scale parameter optimizations.

1 Introduction

Carbon cycle data assimilation systems (CCDASs) optimize internal parameters of dy-
namical models of the global carbon cycle (Kaminski et al., 2002; Rayner et al., 2005;
Scholze et al., 2007), using carbon-cycle related observations. Like atmospheric in-20

verse models (e.g. Gurney et al., 2002), they allow inferring the space-time distribution
of surface CO2 fluxes from observations, but their underlying process-based model
allows them to use a much larger diversity of measurements, e.g. local flux measure-
ments (Kato et al., 2012; Knorr et al., 2010), satellite observations of vegetation activity
(Kaminski et al., 2011; Kato et al., 2012; Knorr et al., 2010) or biomass inventories.25

Their model prognostic equations can also spread the observational information well
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beyond measurement time (Rayner et al., 2011). The downside of this strategy is the
interference from the errors of the model equations in the data assimilation process. In-
deed these equations are imposed to the inversion as a strong constraint, even though
many processes cannot yet be described from first principles at the resolution of global
models, in particular for vegetation, and empirical equations have to model them.5

Bayes’ theory provides a rigorous paradigm to build such CCDASs. Its application
implies characterizing the uncertainties of each CCDAS component:

– The measurement error

– The model error, which stems from inappropriate equation forms or from missing
processes in the carbon-cycle model structure,10

– The error brought by the meteorological forcing data, here considered as a part
of the model error,

– The parameter error, arising from inadequate knowledge about a series of param-
eters

Following the usual convention, we call observation error the sum of the measurement15

error and of the model error (i.e. the first three items in the above list).
Even within the basic assumption of normally-distributed errors, this characteriza-

tion involves potentially large error covariance matrices, at least for the model and the
observation errors.

The present study aims at providing a method to explicitly quantify the error of20

process-based terrestrial models, in particular for global CCDASs. The conclusions
also apply to site-scale parameter optimization schemes. Denoting as “prior” the state
of the carbon-cycle model before any observational constraint, we propose to ana-
lyze the statistics of the prior residuals (observations-minus-prior simulations) with the
help of the assigned prior parameters uncertainties projected in the observation space.25

Within the Bayesian framework, these two pieces of information and the observation
error, which is the summed contribution of model and measurement errors, are linked
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together. We apply this method to the global biosphere model ORganizing Carbon and
Hydrology In Dynamic EcosystEms (ORCHIDEE, Krinner et al., 2005) in temperate de-
ciduous broadleaf forests, using measurements of the daily net ecosystem exchange
(NEE) flux at twelve eddy-covariance flux measurement sites as observable quantity.
We take advantage from the previous studies that have characterized the uncertainties5

of these measurements (e.g. Hollinger and Richardson, 2005). The inferred structure
of the model net carbon flux error (NEE error) is then projected in the space of atmo-
spheric concentrations in order to characterize its structure when assimilating concen-
tration measurements with a CCDAS.

In Sect. 2, we present the biogeochemical model and the flux data used in this study,10

as well as the methodology of the different diagnoses and evaluations. In Sect. 3, the
presentation of the results is divided into five parts: analysis of the statistics of the prior
residuals and the prior error, diagnosis of the temporal structure of the observation
error, posterior evaluation at the site level, identification of the spatial structure of the
observation error, and projection in the space of atmospheric concentrations. Finally,15

the results are discussed in Sect. 4.

2 Methods

2.1 Flux data

The observations of CO2 surface fluxes used in this study have been made with the
eddy-covariance technique. This method uses the covariance between fluctuations of20

turbulent vertical wind (eddies) and the scalar of interest (e.g. CO2 mixing ratio) to cal-
culate vertical fluxes of carbon, water, and energy within atmospheric boundary layers
(Aubinet et al., 2000). The measurements have a footprint of a few hectares and no-
tably rely on the assumption of a well-mixed, fully turbulent boundary layer above a flat
landscape. At present, flux towers are considered as the reference standard for CO225

surface flux measurement, and there has been an effort to develop a global network
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of them across representative biomes in the FluxNet database (Baldocchi et al., 2001;
Baldocchi, 2008). More specifically, the LaThuile archive contains gap-filled measure-
ments of half-hourly net carbon flux (NEE) collected using a standardized protocol
(Papale et al., 2006), as well as the corresponding meteorological data later used as
an input for the ORCHIDEE model. We selected 12 flux tower stations located in the5

Northern Hemisphere, where the vegetation cover is dominated by temperate decid-
uous broadleaf forests, which correspond to one of the plant functional types (PFT)
used in the ORCHIDEE model (Table A1). From this half-hourly data we compute daily
means, in order to take advantage of the rapidly-declining autocorrelation of gap-filled
half-hourly fluxes (see Fig. 5a in Lasslop et al., 2008).10

2.2 Terrestrial model

The biogeochemical vegetation model ORCHIDEE calculates the water, energy and
carbon fluxes between the land ecosystems and the atmosphere. The exchange of
carbon and water during photosynthesis and the energy balance are simulated on
a half-hourly basis, while carbon allocation, autotrophic respiration, foliar onset and15

senescence, mortality and soil organic matter decomposition are processes computed
on a daily time step. The ORCHIDEE processes and ruling equations have been ex-
tensively described by Krinner et al. (2005). In this study, ORCHIDEE is used in a
“grid-point mode” at one given location at a time, forced with the corresponding lo-
cal half-hourly gap-filled meteorological measurements obtained at the flux towers. At20

each location, the modeled carbon pools are initially brought to equilibrium by cycling
the meteorological forcing over a long period, so that the net carbon flux nears zero.
The a priori configuration of the model is the one used in a series of data assimilation
studies (Kuppel et al., 2012; Santaren et al., 2007; Verbeeck et al., 2011). A state vec-
tor x of 26 key parameters is considered (see Table B1). A physically-based variation25

range has been defined for each parameter. The prior standard deviations of the model
parameter errors are assigned in the B matrix as 1/6 of this range.
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2.3 Diagnoses

Defining the prior state x
b as the vector of prior parameters, the prior model output

(here, the daily NEE) is given by H(xb), where H is the observation operator. Assuming
the linearity of the model in the vicinity of the prior state, we introduce the Jacobian
matrix H that corresponds to the linearized version of H . With normally-distributed and5

uncorrelated prior-parameter and observation errors, we can write (e.g. Desroziers
et al., 2005):

HBHT +R = D (1)

HBHT is the projection of the prior-parameter error covariance matrix in the observa-
tion space, R is the covariance matrix of the observations errors (i.e. model errors +10

measurement errors), and D is the covariance matrix of the prior residuals d
o−b (i.e.

the observation-minus-model mismatch), defined as

do−b = yo −H(xb), (2)

where y
o is the observation vector (daily NEE in our case). Following the distinction

made in Sect. 1, R is composed of two terms: Rmeas the covariance matrix of the15

measurement error and Rmod the covariance matrix of the model error. Their respective
contribution to the total observation error budget is discussed in Sect. 3.

An additional diagnosis makes use of the optimized model state, i.e. the NEE fluxes
after the optimization of the model parameters x

b (see the inversion procedure in
Sect. 2.4) to directly derive R (Desroziers et al., 2005):20

R = F, (3)

where F is the covariance between the prior residuals d
o−b and the posterior residuals

d
o−a, defined as

do−a = yo −H(xa), (4)
2264
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where H(xa) is the model output calculated at the optimized state x
a.

The prior and posterior diagnoses proposed in Eqs. (1) and (3) are the starting points

toward a prior estimation R̂
prior

of the covariance matrix of observation errors (i.e. model

errors + measurement errors) and a posterior evaluation R̂
eval

, respectively. The appli-
cation of the calculation to each observation site is detailed in Appendix A.5

2.4 Data assimilation system

The site-scale inversions of the ORCHIDEE parameters are independently performed
at each of the sites listed in Table A1, with a variational data assimilation system. The
optimized parameters are listed in Table B1, while a more detailed description of the
assimilation system can be found in Kuppel et al. (2012). Briefly, we define a Bayesian10

cost function J ,

J(x) =
1
2

[(
yo −H(x)

)T R−1 (yo −H(x)
)
+
(
x−xb

)T
B−1

(
x−xb

)]
, (5)

where all the terms have been defined in the previous section. The cost function is
minimized iteratively using a gradient-based approach, and the boundaries can be ex-
plicitly prescribed for each parameter in the minimization algorithm. At each iteration,15

the gradient of the cost function is computed with respect to all parameters, using the
tangent linear version of the model – except for threshold phenological parameters
where a finite-differences approach is used. Note that for the computation of spatial
statistics between sites (Sect. 3.4), the assimilation system is used in the “multi-site”
mode described in Kuppel et al. (2012), where all sites are used simultaneously to20

derive common parameter values.

2.5 Projection in the space of atmospheric concentrations

The errors of the biosphere model Rmod associated to the Net Ecosystem Exchange
of carbon (NEE) affect the assimilation of concentration measurements within a global
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CCDAS, like the errors of the atmospheric transport models affect the assimilation
of such measurements within atmospheric inversions (e.g. Gurney et al., 2002). To
quantify this impact, we project Rmod in the space of atmospheric mixing ratios using the
LMDZ atmospheric transport model (Hourdin et al., 2006) at global horizontal resolution
2.5×3.75deg2 (latitude, longitude). Mathematically, we compute TRmodTT , with T the5

Jacobian matrix of the transport model. In practice, we use an ensemble approach for
this, rather than the direct sandwich product, as described in Chevallier et al. (2007).
We consider two types of observations. The first one is the measurement of mixing
ratios of CO2 collected in flask air samples or performed in situ by automatic analyzers.
We use the observation time-space sampling of the database gathered by Chevallier10

et al. (2011) for year 2010, which includes 91 stations over all oceans and continents.
The second type of measurement is the column-averaged dry air mole fractions of CO2
(hereafter XCO2

) retrieved from surface stations (Wunch et al., 2011) or from space (e.g.
Crisp et al., 20121). We use the time-space sampling of the quality-controlled retrievals
from the Japanese Greenhouse gases Observing SATellite (GOSAT) made by NASA’s15

Atmospheric CO2 Observations from Space (ACOS) project (O’Dell et al., 2012; Crisp
et al., 2012).

3 Results

3.1 Temporal structure of the prior residual and of the prior-parameter error

Figure 1 shows the temporal autocorrelation structure of the prior residual (observation20

minus simulation) and of the prior-parameter error projected in the observation space
(first term of Eq. 1), for the different FluxNet sites. The two curves displayed here
represent the all-site median values, using 1-day bins. The correlation structure reveals
a similar seasonal pattern in both cases, with ever-positive values, larger at short lags
and at lags close to one year. For the parameter error, the moderately high correlation25

at the one year lag (0.44) indicates that inappropriate parameter values controlling
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seasonal processes (e.g. the maximum photosynthetic capacity) affect the seasonal
pattern of NEE in the same direction each year. For the prior model-data residuals,
in depth analyses of the results reveals that systematic NEE differences occur each
year for specific seasons. For instance, the simulated winter NEE (mainly heterotrophic
respiration for the chosen ecosystem) is overestimated each year at most sites, partly5

because the model was brought to steady state (see Kuppel et al., 2012).
The autocorrelation of the prior-parameter error (projected in the flux space) is gen-

erally larger than that of the prior residual. The all-site correlation of the prior residual
falls below 0.5 after 7 days and reaches a nearly-stable value around 0.12 for lags
between 50 and 330 days. The all-site prior-parameter error correlation also takes one10

week to be less than 0.5, but the decrease is then milder than that of the prior residual
correlation, reaching a minimum of 0.05 around the six-month lag. The more persistent
autocorrelation of the prior-parameter error can be linked to the small size of the state
vector. In our case, as in most optimization studies (Williams et al., 2009), the number
of tuned parameters is rather small, which keeps the number of degrees of freedom15

low.
The correlation of the prior residual error is above that of the prior-parameter error for

lags between 120 and 230 days correlation, with in particular a bump around the 150-
day lag. This last feature possibly comes from an overestimation of the growing season
length in ORCHIDEE: the NEE residual (observation minus simulation) tends to be20

negative both at the beginning and at the end of the growing season, temporally distant
of about 150 days (Kuppel et al., 2012), thus inducing a positive error correlation. The
presence of this bump around the 220-day lag (i.e. the dormant season length) at some
of the sites with several years of data records (not shown) further hints in that direction.

The median standard deviation of the prior residual is equal to 2.1 g C m−2 d−1 when25

combining the sites altogether, while the median prior-parameter error contributes to an
uncertainty of 1.3 g C m−2 d−1 in the observation space. This latter value is not negligi-
ble, which indicates that the current uncertainty on the main model parameters induces
a significant uncertainty on the simulated NEE.

2267

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 2259–2288, 2012

The structural error
of carbon cycle

models

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.2 Temporal structure of the observation error

The orange curve in Fig. 2 (“linear assumption”) shows the corresponding all-site me-
dian time correlogram, from the autocorrelation of the observation errors (model +
measurement errors) computed at each site. One can notice a very rapid decrease, as
after one day the correlation falls to a ten-day long plateau at 0.4, and then decreases5

to reach 0.1 after one month. For larger lags, the correlation is mostly negligible al-
though there is a bump almost reaching 0.4 around the 150-day lag, and a weaker one
around the 220-day lag. These last two features originate from the prior residual error
(Sect. 3.1) and are made significant in the observation error by the very low correlation
of the prior-parameter error around this lag (Fig. 1). The seasonality of the observation10

error correlation is also significant, although similar to both the prior residual and the
prior-parameter error for large time lags (Sect. 3.1).

The median standard deviation of the observation error is estimated to be
1.7 g C m−2 d−1. This number combines measurement and model contributions
(Sect. 2.3). Hollinger and Richardson (2005) found that the random measurement er-15

rors are of about 0.4 g C m−2 d−1, which means that the variance due to the measure-
ment errors accounts for less than 6 % of the total observation variance. Additionally,
Lasslop et al. (2008) showed that no significant measurement error correlation remains
at the daily time scale. From these elements, we conclude that the seasonal struc-
ture of the model error in ORCHIDEE is very similar to that of the observation error20

described above (the orange curve in Fig. 2). This result notably indicates that the
model error is significantly correlated across seasons: for instance, any underestima-
tion/overestimation of the NEE in summer or winter remains the following year.

As mentioned in Appendix A, the robustness of the linearity assumption is tested
by estimating the prior error statistics in the observation space (based on Eq. 1) with25

an ensemble approach at each site. The rest of the prior diagnosis is otherwise the
same, and the all-site median of the time correlation of the corresponding observation
error is shown by the blue curve in Fig. 2. The structure of the “ensemble” observation
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error is very close to that diagnosed previously with the “linear” method, although the
correlation of the former remains below the latter, and the standard deviation of the
“ensemble” observation error is slightly smaller (1.6 g C m−2 d−1, not shown). This re-
sult indicates that the linearity assumption in the vicinity of the prior-parameter state
does not have a significant impact upon the diagnosis presented in this study.5

3.3 Posterior evaluation at the site level

The diagnosed observation error (model + measurement error) statistics are used as
prior information for site-scaled inversions of ORCHIDEE parameters at each of the
sites described in Table A1, according to the methodology described in Sect. 2.4. In
Fig. 2, the grey curve shows the median time correlogram corresponding to the pos-10

terior diagnosis (after the inversions) of the observation error estimated with both prior
and posterior residuals (Eq. 3: F). For lags shorter than 100 days or longer than 250
days, there is a remarkable consistency with the observation error statistics diagnosed
a priori (orange curve). Elsewhere, F is nearly uncorrelated and only weakly repro-
duces the two bumps (around the 150-day and 220-day lags) mentioned in the previous15

section. It indicates that these features are most probably only partially related to the
model error. Instead, this particular correlation structure may be present in the struc-
ture of the prior-parameter error, but is currently ignored due to the prior-parameter
diagonal assumption made in the inversions. The standard deviation of F is equal to
1.9 g C m−2 d−1, somewhat higher than that brought by the prior diagnosis.20

Further on, one metric often used to estimate the optimality of an optimization is
the one based on the relation of statistical expectation notably presented in Tarantola
(1987):

J
(
xa) = p/2, (6)

where x
a is the vector of optimized parameters at the minimum of the cost function J ,25

and p the number of observations.
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This evaluation criterion is applied to the inversions conducted at each sites. Table 1
shows the all-site medians of the ratio between the left-hand term and the right-hand
term of Eq. (6) (hereafter chi-square ratio), using various observation error statistics. In
the first case, we only take the measurement error into account, hence R is diagonal
with a standard deviation equal to 0.4 g C m−2 d−1. One can notice that the value of the5

cost function at its minimum remains much larger than the half the number of obser-
vations (Table 1, first row), suggesting that the low prior observation uncertainty puts
too much trust in the measured fluxes and thus cannot meet the optimality criterion.
Second, we consider the observation error diagnosed a priori in the previous section
(measurement + model error). We keep R diagonal here as well, because of the quick10

drop in the time correlations shown in Fig. 2, and the standard deviation is now equal
to 1.7 g C m−2 d−1. The value of the analyzed parameters is affected at most sites, with
smaller changes from their prior values (not shown). The chi square ratio is much more
consistent in this case (Table 1, second row), although the value suggests that there is
still too much weight put on the observations. Taking advantage of the posterior diag-15

nosis presented above, we now adjust the value of the variance in R with a standard
deviation of 1.9 g C m−2 d−1. The results show that this first step of an “iterative” esti-
mation of R significantly improves the optimization according to the present criterion
(Table 1, third row), keeping in mind that the observation error correlations were simply
neglected.20

3.4 Spatial structure of the observation error

The spatial footprint of the observation error without time lag is shown by the distance
correlogram in Fig. 3. Note that here we use the posterior diagnosis based on Eq. (3),
which provides a better numerical stability than the prior diagnosis of Eq (1). Each point
in Fig. 3 represents a pair of sites that have at least one year of data in common. The all-25

site median is calculated using 400-km bins. It shows a declining spatial structure of the
correlation within the first 500 km, where it remains larger than 0.4, while it converges
toward zero for larger lag distances. Since all sites present the same dominant PFT and

2270

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 2259–2288, 2012

The structural error
of carbon cycle

models

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

since the spatial correlations of the measurement error is considered as negligible, we
suggest that the inferred spatial structure of the observation error derives from the
model error and that the correlation decline originates from the meteorology. In the
next section, this spatial structure is approximated by an exponential decay, with an
e-folding length of 500 km in the flux space (black dotted line in Fig. 3).5

3.5 Projection in the space of concentrations

Assuming that the characteristics of Rmod in all biomes are those diagnosed for R
in temperate deciduous broadleaf forests (e-folding lengths of 500 km and 1 day for
space and time correlation, respectively), we project the inferred R̂mod in the space of
atmospheric concentrations using the LMDZ transport model (see Sect. 2.5). For the10

surface air sample measurements, we find that the median of the standard deviation of
the observation error is 1.3 ppm across the 91 sites with a maximum of 8 ppm (at sta-
tion UTA, Wendover, Utah, USA) and a minimum of 0.1 ppm (at station SMO, Tutuila,
American Samoa). No specific spatial structure of this error is seen. For the total col-
umn measurements, the standard deviation is 0.5 ppm with a marked spatial structure:15

an e-folding length of 1200 km can be deduced from the simulations.

4 Conclusions

This study proposes a method to diagnose the model structural error in the process-
based terrestrial biosphere model ORCHIDEE, based on the information provided by
eddy-covariance measurements of net carbon fluxes. This term represents the equiv-20

alent of the aggregation error that has been rigorously described in atmospheric in-
versions (Bocquet et al., 2011; Kaminski et al., 2001; Thompson et al., 2011). As
a first step, we have used NEE measurement records at twelve flux tower sites
in temperate deciduous broadleaf ecosystems. The statistics of the prior residuals
(i.e. measurements-minus-simulations) and the prior-parameter error allowed us to25
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estimate the structure of the observation error (i.e. model error + measurement er-
ror), and to subsequently derive the model error based on earlier works regarding the
flux measurement error.

We find that the model error dominates the observation error budget, with a stan-
dard deviation of 1.6 g C m−2 d−1. The observation error shows some time correlation5

structure, but rapidly declines beyond the first-day lag so that the assumption of a di-
agonal observation error covariance matrix within a CCDAS remains realistic. Note
however an increase of the error correlation at the one year time lag (up to 0.45),
currently neglected in most carbon cycle optimization systems, that may impact the
estimated state vector and associated errors in CCDASs. Ensemble simulations show10

that these results are independent from the assumed linearity of the model in the vicin-
ity of the prior state. A spatial structure is also visible, with a decrease of the corre-
lation in space rather e-folding with a length of about 500 km. Evaluative site-scaled
parameters inversions support a consistency between our diagnosis method, based
on prior information, and a posterior diagnosis using both the prior and the optimized15

fluxes. The same inversions also show that the diagnosed standard deviation of the
observation error complies fairly well with a common optimality criterion used in data
assimilation, and additionally suggests that an iterative use of the posterior diagnosis
mentioned above could further improve the estimation of the observation uncertainty.
The diagnosed model error is large enough to necessitate an explicit representation in20

parameter optimization schemes using NEE measurements in general and in CCDASs
in particular.

For CCDASs, this error also bears consequences on the assimilation of concen-
tration measurements. Our evaluation indicates that it can simply be treated like an
additional contribution to the observation error variance of the order of 1 ppm2 for most25

background air sampling stations. For the assimilation of CO2 total column measure-
ments like the GOSAT retrievals, the contribution to the variance is small (0.25 ppm2),
but its spatial coherence (an e-folding length of about 1200 km) makes its represen-
tation in CCDASs both critical and very challenging. Its characteristics are actually
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commensurate with those of transport model errors (Chevallier et al., 2010; Houweling
et al., 2010) and both concur in hindering the assimilation of XCO2

.
One of the assets of CCDAS is the possibility to run the optimized model outside

the data assimilation period, for instance for long-term predictions (e.g. Rayner et al.,
2011). In this prediction mode, the model carries its structural error. As a consequence,5

the forecast error does not converge towards zero when assimilating more informative
observations in the parameter optimization phase. Our method allows quantifying the
contribution of the structural model error to the forecast error.

There are four main limitations to this study. First, only one type of ecosystem is
presently considered, which may occult specificities of other types of biomes under dif-10

ferent climatic conditions. Second, more measurement sites in this ecosystem would
be needed to span a larger range of forest species, forest age classes, and soil types
in order to derive more robust estimates. Third, it is hard to assess to which extent our
results apply to terrestrial biosphere models other than ORCHIDEE. Fourth, the contri-
bution from the meteorological forcing has been not been considered in the observation15

error budget because the forcing is taken from in situ measurements in the simulations,
but this component should be considered when applying the present method at coarser
scales, i.e. with less known forcing variables. Additionally, the method can be extended
to other measurements such as the latent heat flux (LE) and the sensible heat flux (H),
which account for the energy budget in process-based biosphere models.20

Nonetheless, this work should be considered as an effort toward the estimation of the
model structural components of the uncertainty in complex data assimilation systems
such as CCDASs, all the more that the method requires few computations (only prior
simulations and sensitivity are required) and can easily be applied beyond the present
framework.25
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Appendix A

Application of the diagnoses to the FluxNet data

We first apply the prior and posterior diagnoses respectively described by Eqs. (1) and
(3) to derive the spatial structure of the observation error (i.e. model error + measure-
ment error) covariance matrix R at each observation site, using observations serially5

distributed over time. Considering daily observations of NEE, the term of coordinates
(i ,j ) of a given error covariance matrix expresses the covariance between days i and
j , with a time lag equal to |i − j | days (all the terms of one diagonal account for equally-
lagged covariances). Given the limited number of observations available at some sites,
D and F are calculated at each site as diagonal-constant matrices (Toeplitz matrices).10

If the main diagonal is called the first diagonal, the (t+1)-th diagonal of D (resp. F) is
then defined by a single term Dt (resp. Ft) equal to the t-lagged covariance:

Dt =
1

N − t
((do−b)1≤k≤N−t)

T ((do−b)t≤k≤N ), (A1)

Ft =
1

N − t
((do−b)1≤k≤N−t)

T ((do−a)t≤k≤N ), (A2)
15

where N and (dx)t1≤k≤t2 are respectively the dimension of the residuals and the sub-
vector of d

x taken between chronological indexes t1 and t2. Note that the relative
shortness of the time series available at each site, with respect to the time scales of
some biophysical processes (such as soil carbon storage), makes it difficult to identify
any systematic (long term) bias in the residuals. To circumvent this problem and follow-20

ing Desroziers et al. (2005), we compute mean squares rather than standard deviations
in Eqs. (A1) and (A2).
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For consistency, we also reduce the full HBHT matrix to a diagonal-constant matrix
at each site, by averaging along each diagonal:

HBHT
t =

1
N − t

N−t∑
k=1

(HBHT )k,k+t, (A3)

where (HBHT )k,k+t are the elements of the (t+1)-th diagonal in the lower half of the

original HBHT . This matrix HBHT can also be obtained a simple ensemble method5

applied at each site, avoiding the linearity assumption. Instead of using the sandwich
product HBHT , in this case we use the statistics provided by a large ensemble of model
simulations (500 members) with a parameter distribution that follows the statistics of B
around the prior values.

Both matrices R̂
prior

and R̂
eval

are calculated as diagonal-constant. For each lag t,10

R̂
prior
t = Dt −HBHT

t (A4)

R̂
eval
t = Ft (A5)

Then, we adapt Eqs. (A1) and (A3) to the spatial domain by combining statistics be-
tween all the sites, using observations simultaneously made at each site. Considering15

two locations A and B, spatially distant of d , with intersecting simulation/measurements
time periods, we apply the prior diagnosis based on Eq. (1):

2275

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 2259–2288, 2012

The structural error
of carbon cycle

models

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Dd =
1

NAB
(do−b

A )Tdo−b
B , (A6)

HBHT
d =

1
NAB

NAB∑
k=1

(HBHT
AB)k,k , (A7)

R̂d = Dd −HBHT
d , (A8)

where d
o−b
A and d

o−b
B are the two vectors of prior residuals chronologically subsampled5

within their temporal intersection, NAB is the number of intersecting observations, and
HBHT

AB is the sub-matrix of HBHT expressing the prior error statistics between A and
B within their temporal intersection. Indeed, a single all-site HBHT is here computed,
using a “multi-site” approach where a single common set of parameters simultaneously
describes the prior state at all 12 sites (Kuppel et al., 2012).10
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Thompson, R. L., Gerbig, C., and Rödenbeck, C.: A Bayesian inversion estimate of N2O emis-15

sions for western and central Europe and the assessment of aggregation errors, Atmos.
Chem. Phys., 11, 3443–3458, doi:10.5194/acp-11-3443-2011, 2011.

Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Budney, J., McKain, K., Fitzjar-
rald, D., Czikowsky, M., and Munger, J. W.: Factors controlling CO2 exchange on timescales
from hourly to decadal at Harvard Forest, J. Geophys. Res.-Biogeosci., 112, G02020,20

doi:10.1029/2006jg000293, 2007.
Verbeeck, H., Peylin, P., Bacour, C., Bonal, D., Steppe, K., and Ciais, P.: Seasonal patterns of

CO2 fluxes in Amazon forests: fusion of eddy covariance data and the ORCHIDEE model, J.
Geophys. Res.-Biogeosci., 116, G02018, doi:10.1029/2010jg001544, 2011.

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Car-25

valhais, N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E.,
Trudinger, C. M., and Wang, Y. -P.: Improving land surface models with FLUXNET data,
Biogeosciences, 6, 1341–1359, doi:10.5194/bg-6-1341-2009, 2009.

Wunch, D., Toon, G. C., Blavier, J. F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Grif-
fith, D. W. T., Sherlock, V., and Wennberg, P. O.: The total carbon column observing network,30

Philos. T. Roy. Soc. A, 369, 2087–2112, doi:10.1098/rsta.2010.0240, 2011.

2281

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2004gb002254
http://dx.doi.org/10.1098/rsta.2010.0378
http://dx.doi.org/10.1029/2006gb002834
http://dx.doi.org/10.1029/2007jd008642
http://dx.doi.org/10.5194/acp-11-3443-2011
http://dx.doi.org/10.1029/2006jg000293
http://dx.doi.org/10.1029/2010jg001544
http://dx.doi.org/10.5194/bg-6-1341-2009
http://dx.doi.org/10.1098/rsta.2010.0240


GMDD
5, 2259–2288, 2012

The structural error
of carbon cycle

models

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Chi-square test after optimization.

Observation error statistics All-site median χ2 (2J
(
x
a)/p)

Measurement only: diagonal R, σ2 = 0.16 14.6
Diagnosis a priori: diagonal R, σ2 = 2.78 1.12
Diagnosis a posteriori: diagonal R, σ2 = 3.67 0.64
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Table A1. Information about the selected FluxNet sites.

Site Location Time period References

DE-Hai 51.079◦ N, 10.452◦ E 2000–2006 Knohl et al. (2003)
DK-Sor 55.487◦ N, 11.646◦ E 2004–2006 Pilegaard et al. (2001)
FR-Fon 48.476◦ N, 2.78◦ E 2006 Prevost-Boure et al. (2010)
FR-Hes 48.674◦ N, 7.064◦ E 1998–2004 Granier et al. (2008)
JP-Tak 36.146◦ N, 137.423◦ E 1999–2004 Ito et al. (2006)
UK-Ham 51.121◦ N, 0.861◦ W 2004–2005 http://www.forestry.gov.uk/

website/forestresearch.nsf/
ByUnique/INFD-62NBUH

US-Bar 44.065◦ N, 71.288◦ W 2004–2005 Jenkins et al. (2007)
US-Ha1 42.538◦ N, 72.172◦ W 2003–2006 Urbanski et al. (2007)
US-LPH 42.542◦ N, 72.185◦ W 2003–2004 Hadley et al. (2008)
US-MOz 38.744◦ N, 92.2◦ W 2005–2006 Gu et al. (2012)
US-UMB 45.56◦ N, 84.714◦ W 2000–2003 Curtis et al. (2002)
US-WCr 45.806◦ N, 90.08◦ W 1999–2004 Cook et al. (2004)

2283

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.forestry.gov.uk/website/forestresearch.nsf/ByUnique/INFD-62NBUH
http://www.forestry.gov.uk/website/forestresearch.nsf/ByUnique/INFD-62NBUH
http://www.forestry.gov.uk/website/forestresearch.nsf/ByUnique/INFD-62NBUH


GMDD
5, 2259–2288, 2012

The structural error
of carbon cycle

models

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table B1. Parameters of the state vector x, with their prior value, variation range and uncer-
tainty.

Parameter Description Prior value Range σprior

Vcmax Maximum carboxylation rate
(µmolm−2 s−1)

55 30–80 8.33

Gs,slope Ball-Berry slope 9 6–12 1
cT ,opt Factor controlling optimal photo-

synthesis temperature (◦C)
26 18–34 2.67

cT ,min Factor controlling minimal pho-
tosynthesis temperature (◦C)

−2 −7 3 1.67

cT ,max Factor controlling maximal pho-
tosynthesis temperature (◦C)

38 33–43 1.67

SLA Specific leaf area (m2 g−1) 0.026 0.013–0.05 0.015
LAIMAX Maximum LAI per PFT (m2 m−2) 5 3–8 0.83
Klai,happy LAI threshold to stop carbohy-

drate use
0.5 0.15–0.7 0.09

Kpheno,crit Multiplicative factor for growing
season start threshold

0.5 2 0.25

cT ,senescence Offset for temperature threshold
for senescence (◦C)

12 6–18 2

Lagecrit Average critical age for leaves
(days)

180 120–240 20

Humcste Parameter describing the expo-
nential root profile

0.8 0.2–3 0.47

Dpucste Total depth of soil water pool (m) 2 0.2–10 1.63
Fstressh Factor controlling threshold of

soil water content to open stom-
atas

6 2–10 1.33
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Table B1. Continued.

Parameter Description Prior value Range σprior

Q10 Temperature dependence of
heterotrophic respiration

1.99372 1–3 0.33

KsoilC Multiplicative factor of initial car-
bon pools

1 0.1–2 0.32

HRH ,a Factor of the humidity depen-
dence of heterotrophic respira-
tion

−1.1 −1.4− (−0.8) 0.1

HRH ,b Factor of the humidity depen-
dence of heterotrophic respira-
tion

2.4 2.1–2.7 0.1

HRH ,c Factor of the humidity depen-
dence of heterotrophic respira-
tion

−0.29 -0.59 0.01 0.1

HRH ,min Factor of the humidity depen-
dence of heterotrophic respira-
tion

0.25 0.1–0.6 0.083

MRa Slope of the relationship be-
tween temperature and mainte-
nance respiration

0.16 0.08–0.24 0.027

MRb Intercept of the relationship be-
tween temperature and mainte-
nance respiration

1 0.5–2 0.25

GRfrac Fraction of biomass available for
growth that is respired

0.28 0.2–0.36 0.027

Zdecomp Parameter describing the profile
of organic matter content in the
soil

0.2 0.1–1.5 0.23

Z0overheight Characteristic rugosity length
(m)

0.0625 0.02–0.1 0.013

Kalbedo,veg Multiplying factor for surface
albedo

1 0.8–1.2 0.067

2285

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-print.pdf
http://www.geosci-model-dev-discuss.net/5/2259/2012/gmdd-5-2259-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
5, 2259–2288, 2012

The structural error
of carbon cycle

models

S. Kuppel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0 50 100 150 200 250 300 3500
Lag time (days)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
rr

el
at

io
n

Prior-parameter error
Prior residual

Fig. 1. Median of the autocorrelation of the ORCHIDEE model residual (measurements minus
simulations) and the prior-parameter error projected in the flux space, as functions of the time
lag, for daily NEE.
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Fig. 2. Median of the autocorrelation of the observation error (i.e. model error + measurement
error), calculated with three methods: prior diagnostics with the linear assumption (orange,
Eq. 1), prior diagnostics with ensemble simulations (blue, Eq. 1), and posterior diagnostics
(grey, Eq. 3).
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Fig. 3. Distance correlogram of the ORCHIDEE model error, using pairs of distant sites for
a same time. Each point includes all the common years of one site pair. The thick black line
represents the overall median using 400-km bins, and the dotted line an exponential decay with
an e-folding length of 500 km.
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